
 F 34  ()  34 

©  ()

Reacting and non-reacting, three-
dimensional shear layers with spanwise
stretching

   F 34  () 
S  S  •     •    
  •     

Jonathan L. Palafoutas and William A. Sirignano

ARTICLES YOU MAY BE INTERESTED IN

         S    

  F 34  () 

H      – 

  F 34  () 

   –W       
  F 34  () 



Reacting and non-reacting, three-dimensional
shear layers with spanwise stretching

Cite as: Phys. Fluids 34, 123602 (2022); doi: 10.1063/5.0125269
Submitted: 10 September 2022 . Accepted: 11 November 2022 .
Published Online: 2 December 2022 . Publisher error corrected: 8 December 2022

Jonathan L. Palafoutas1,a) andWilliam A. Sirignano2

AFFILIATIONS
1Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08540, USA
2Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, California 92697, USA

a)Author to whom correspondence should be addressed: jpalafou@princeton.edu

ABSTRACT

A three-dimensional, steady, laminar shear-layer ow spatially developing under a boundary-layer approximation with mixing, chemical
reaction, and imposed normal strain is analyzed. The purpose of this study is to determine conditions by which certain stretched vortex
layers appearing in turbulent combustion are the asymptotic result of a spatially developing shear ow with imposed compressive strain. The
imposed strain creates a counterow that stretches the vorticity in the spanwise direction. Equations are reduced to a two-dimensional form
for three velocity components. The non-reactive and reactive cases of the two-dimensional form of the governing equations are solved
numerically, with consideration of several parameter inputs, such as the Damk€ohler number, the Prandtl number, chemical composition,
and free-stream velocity ratios. The analysis of the non-reactive case focuses on the mixing between hotter gaseous oxygen and cooler gas-
eous propane. The free-stream strain rate j is predicted by ordinary differential equations based on the imposed spanwise pressure varia-
tion. One-step chemical kinetics are used to describe diffusion ames and multi-ame structures. The imposed normal strain rate has a
signicant effect on the width of downstream mixing layers as well as the burning rate. Asymptotically in the downstream direction, a con-
stant width of the shear layer is obtained if the imposed normal strain rate is constant. The one-dimensional asymptotic result is an exact
solution to the multicomponent Navier–Stokes equation for both reacting and non-reacting ows, although it was obtained using the
boundary-layer approximation. A similar solution with the layer width growing with the square root of downstream distance is found when
the imposed strain rate decreases as the reciprocal of downstream distance. The reduced-order asymptotic solutions can provide useful guid-
ance in developing amelet models for simulations of turbulent combustion.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0125269

I. INTRODUCTION
A. The role of vortex stretching in turbulent mixing
and combustion

In order to study turbulent combustion in practical engines via
computational analysis, it is necessary to establish sub-grid amelet
models that can be coupled with large-eddy simulations. The models
must provide the burning rate based on the magnitudes of the strain
rates and vorticity imposed by the larger turbulent ow. Since the ames
are known to occur at smaller scales than the largest eddies in the
ow, they often cannot be resolved by direct numerical simulation,
thereby requiring a separate analysis. Fortunately, the ames typically
occur on small scales where laminar behavior may be assumed. The
purpose of this study is to give some foundation to recent three-
dimensional amelet models1–3 based on vortex stretching. Specically,
those models assume an asymptotic form whereby the scalar variables
and the three components of velocity vary with only one spatial variable.

Our aim here is to show whether and how a three-dimensional struc-
ture consisting of a shear layer with vortex stretching will asymptoti-
cally, with growing downstream distance, yield a dependence on only
the transverse position across the shear layer. Both reacting and non-
reacting cases will be examined.

A useful amelet model must have a statistically accurate repre-
sentation of the relative orientations on this smallest scale of the vortic-
ity vector, scalar gradients, and the directions of the three principal
axes for the strain rate. Several studies with direct numerical simula-
tions (DNS) exist, which are helpful in understanding this important
alignment issue for application to turbulent ows. Certainly for
incompressible ow and generally for variable-density ow, one prin-
cipal strain rate c locally will be compressive, another principal strain
rate a will be tensile, and the third can be either extensional or com-
pressive and will have an intermediate strain rate b of lower magnitude
than the other like strain rate. Specically, a > b > c; a > 0; c < 0;
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and, for incompressible ow, aþ bþ c ¼ 0. Betchov4 indicates that,
for incompressible, homogeneous, isotropic turbulence, the case with
b > 0 is most important for vorticity production and the turbulence
energy cascade to smaller scales. Ashurst et al.5 and Nomura and
Elghobashi6 show that the vorticity alignment with the intermediate
strain direction is most probable in both cases of homogeneous
sheared turbulence and isotropic turbulence, but especially in the case
with shear. They nd that the intermediate strain rate is most likely to
be extensive (positive). Dresselhaus7 predicts the tendency for align-
ment of the intermediate strain direction with the vorticity. Kerr8

reports that large values of helicity are not found in the turbulence cas-
cade process, thereby indicating that vorticity does not have strong
alignment with the major compressive or major tensile strain
direction.

Nomura and Elghobashi9 nd, for reacting turbulent ow, that in
regions of heat release and variable density, alignment of the vorticity
with the most tensile strain direction can occur. As the strain rates
increase, the intermediate direction becomes more favored for vorticity
alignment. The scalar gradient and the direction of the compressive
strain are commonly aligned.5,6,9–11 There is wide agreement that the
most common intermittent vortex structures in regions of high strain
rate are sheets or ribbons rather than tubes.

Based on those understandings concerning vector orientations,
one may construct a amelet model based on superposition of a
strained counterow and ow structure with vorticity. Such models
have recently been created.1–3 They are three-dimensional in the sense
that three velocity components are determined, generally with some
dependence on three spatial coordinates. However, the scalar variables
in the counterow conguration are dependent on one variable. Here,
we attempt to provide support for the ndings by showing that it can
easily occur as the downstream asymptote for a shear layer subject to a
compressive strain in the transverse direction. Following the guidance
from the cited DNS studies, we choose a shear-layer conguration
with the scalar gradient and the direction of the compressive normal
strain aligned with each other and orthogonal to the vorticity vector.
Any shear layer is also a vortex layer because vorticity is present in the
sheet-like conguration. The imposed counterow in our situation
results in a stretched vortex layer.

As noted above, there is evidence from the DNS literature that
these vortex layers or sheets can exist in both non-reacting and react-
ing turbulent ows. Further evidence is provided by stability analyses
for incompressible ows. For non-reacting ows, Neu12 works with
the Burgers stretched vortex sheet, showing that it can be stable; how-
ever, for sufcient vortex strength (or insufcient imposed strain rate),
it becomes unstable, causing formation of a periodic array of rolled-up
concentrated vortices with stretched braids. Corcos and Sherman13

address stability of a purely two-dimensional viscous vortex sheet
without describing it as the Burgers stretched vortex sheet. The roll-up
of the two-dimensional ow is examined. Corcos and Lin14 study the
stability under three-dimensional perturbations. Lin and Corcos15

study the phenomenon further exploring streamwise vorticity. The
general implication for turbulent combustion and the amelet theory
is that a vortical layer or sheet can exist. However, it can also become
unstable through the roll-up mechanism leading to larger vortex-tube
structures. This is consistent with the observation from DNS5,6,9–11

and experiment16 that both vortex layers and vortex tubes can exist in
the same turbulent ow eld.

This study relates to some interesting classical work on temporal,
viscous vortex layers and vortex tubes subject to normal strain. A nd-
ing in those studies was that a balance between the diffusion and
advection of vorticity could be achieved, resulting in a steady-state
solution. Burgers,17 followed by Rott,18 examined the axisymmetric
behavior of a stretched vortex tube for incompressible ow. The
stretching (extensive or tensile strain) in the direction aligned with the
vorticity vector resulted in an inward swirling motion. The steady-
state solution of the axisymmetric Navier–Stokes equation (known as
the Burgers stretched vortex tube) requires a matching of vorticity
strength and viscosity such that radially outward diffusion of vorticity
and radially inward advection of vorticity are in balance. The two-
dimensional analog of the stretched vortex tube involves a viscous
shear layer, which is simultaneously a vortex layer, subject to normal
compressive strain in a direction orthogonal to the shear-layer stream
direction and with the associated tensile strain aligned with the vortex
vector. The solution of the steady-state conguration for this vortex
layer has been attributed to the unpublished work presented in lectures
by Burgers.19 The two-dimensional analog is also mentioned without
attribution by Batchelor,20 where this layer is described as a vortex
sheet. Neu12 refers to this two-dimensional layer as the “stretched
Burgers vortex sheet.” Note that, in contrast, the description “vortex
sheet” for an inviscid ow implies a mathematical discontinuity in
velocity and a vortex sheet of zero thickness; see Saffman.21

The incompressible velocity eld dened by the Burgers stretched
vortex sheet has ux, uy, and uz as the velocity components. The
imposed normal strain rate S, kinematic viscosity , and free-stream
velocity magnitude U are taken as positive constants. As
y ! 1; uxðx; y; z; tÞ ! U ; @uy=@y ! S, and @uz=@z ! S; also,
as y ! 1, uxðx; y; z; tÞ ! U; @uy=@y ! S, and @uz=@z ! S.
Then, the exact steady-state solution to the Navier–Stokes equations is
found for the velocity components and the vorticityxz, whereby

ux ¼ Uerf


S
2

r
y

 !
; uy ¼ Sy; uz ¼ Sz;

and

xz ¼  @ux
@y

¼ U


S

2p

r
exp  Sy2

2

 
:

Although the sheet is being stretched in the z-direction, diffusion of
momentum and vorticity in the y-direction allows a balance with
advection in the y-direction that results in a steady solution.

Our analysis considers a steady, spatially developing shear layer
in the x-direction with a two-dimensional imposed strain in the yz-
plane. The imposed strain can affect the growth of the shear-layer
width with downstream distance. In principle, if the imposed strain
rate is constant with x, an asymptote should be reached downstream,
where the layer thickness becomes constant, which resembles the
Burgers stretched vortex sheet. Variable density with a low Mach
number will be considered. Both reacting and non-reacting ows will
be studied.

B. Flamelet modeling

Laminar, two-dimensional shear layers with mixing of the fuel
and the oxidizer and the resulting diffusion ames is a classical subject
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of study (see Williams22). Two-dimensional planar and axisymmetric
counterow congurations of laminar diffusion ames have been stud-
ied extensively: Linan,23 Peters,24 Williams,25 and Pierce and Moin.26

More recently, Rajamanickam et al.27 considered a three-dimensional
ame conguration with both counterow and a mixing layer, which
resulted in a spanwise stretching; however, the use of a uniform Oseen
velocity avoided the effects of shear and vorticity. In a series of papers,
Sirignano28–31 has considered three-dimensional ame conguration
with shear, counterow (and associated stretching), mixing, and com-
bustion. Here, we extend the work of Sirignano31 who considered simi-
lar and approximately similar solutions that reduced the order of the
problem to one-dimensional equations. We will reduce the three-
dimensional problem to a two-dimensional system of equations to
consider spatial development of the layer.

Our formulation builds on some classical treatments of the shear
layers and boundary layers with variable density. Crocco32 studied the
effects due to viscous heat generation for compressible ow over a
two-dimensional at plate. Howarth,33 Illingworth,34 and Stewartson35

found compressible solutions by using a modication factor for
incompressible solutions for a suite of related boundary layer
problems.

Some time later, combustion scientists addressed counterows
where the fuel and the oxidizer streams oppose each other. Linan23

found analytical solutions to such a counterow problem using one-
step Arrhenius chemistry. Bilger36 used a more robust expression for
chemical rate. Linan and Williams37 extended the problem to account
for temporal variation. There is uniform agreement that the presence
of strain due to counterow inhibits ame growth and temperature.
Essentially, residence time can be considered as the reciprocal of the
strain rate.

The recent study31 addresses three-dimensional, steady laminar
ow structures with mixing, chemical reaction, normal strain, and
shear strain. The problem is reduced to a two-dimensional form. A
one-dimensional similar solution is developed. This study reconsiders
the non-reactive and reactive cases of the two-dimensional form of the
governing equations. In particular, these equations are expressed as a
stepwise algorithm to solve the two-dimensional ow numerically,
which allows consideration of many different parameter cases related
to the Prandtl number, chemical composition, and free-stream velocity
ratios. The analysis here of the non-reactive case focuses on the mixing
between gaseous oxygen at a temperature of 800K and gaseous pro-
pane at 2

3  800 ¼ 533K. The analysis of the reactive case considers

both ambient streams to have a temperature of 300K with an initial
peak ignitor temperature of 2000K. Both cases include an imposed
normal strain and shear strain. Various Prandtl numbers, free-stream
horizontal velocity ratios, and Damk€ohler numbers are considered.

In Sec. II, the analysis is presented. The results for three different
congurations are presented in Sec. III, with conclusions following in
Sec. IV.

II. ANALYSIS

The selection and development of steady-state equations that
govern the ow, including the continuity, momentum, energy, and
species continuity equations, are discussed in Subsection IIA.
Subsection II B offers a description of the nite-difference approxima-
tions and marching scheme utilized in this study. Subsection IIIC out-
lines this study’s comparison with Sirignano’s one-dimensional similar
solution.31

A. Governing equations

We consider the governing equations with the boundary-layer
approximation described by Sirignano31 where the velocity component
u, enthalpy h, and mass fraction Ym are constant with the spanwise
coordinate z. The free-stream ows are primarily in the x-direction
with compressive normal strain in the y-direction and extensional nor-
mal strain in the z-direction, as depicted in Fig. 1. There is no imposed
pressure gradient in the x-direction. Any pressure gradient in the y-
direction caused by the imposed strain will not be consequential for
the x-momentum equation. It follows that

@ðquÞ
@x

þ @ðqvÞ
@y

þ @ðqwÞ
@z

¼ 0; (1)

q u
@u
@x

þ v
@u
@y

þ w
@u
@z

 
¼ @

@y
l
@u
@y

 
; (2)

q u
@w
@x

þ v
@w
@y

þ w
@w
@z

 
þ @p

@z
¼ @

@y
l
@w
@y

 
; (3)

q u
@h
@x

þ v
@h
@y

þ w
@h
@z

 
¼ 1

Pr
@

@y
l
@h
@y

 
 qQ _xF ; (4)

q u
@Ym

@x
þ v

@Ym

@y
þ w

@Ym

@z

 
¼ 1

Pr
@

@y
l
@Ym

@y

 
þ q _xm;

m ¼ O; F;CO2;H2O; (5)

FIG. 1. Schematic of shear mixing with
imposed counterow.
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where O and F correspond to the oxidizer and the fuel. q _xF gives the
mass consumption rate per unit volume.

The Prandtl number (Pr) is assumed to be constant and equal to
the Schmidt number (Sc), which results in a unity Lewis number
(Le ¼ Sc=Pr). Radiation and gravity are not considered. At the low
speeds considered, heat generation via viscous dissipation is neglected.

The compressive counterow imposed in the y-direction causes a
symmetry for pressure and an anti-symmetry for the w-component of
velocity in the z-direction. w behaves according to the stagnation ow
prole w ¼ jz, neglecting the terms of Oðz2Þ in the yz-plane.31 For
the classical counterow, no terms of Oðz2Þ or higher will appear;
thus, the description would be complete. Positive values of j indicate
that the ow eld is stretched in the z-direction. To the same order, all
other quantities are considered constant with z. We create a function

f ðxÞ ¼

 @2p
@z2


z¼0

s
> 0; (6)

to describe the variation in pressure in z as a function of x. The square
root of the second derivative is chosen because @p=@z ¼ 0 on the
z¼ 0 plane as a consequence of the spanwise symmetry for pressure.
Under the boundary-layer approximation, pressure variation with y is
neglected in the x-momentum equation. So, f is a function only of x.
Therefore, the continuity equation (1) and the z-momentum equation
(3) become

@ðquÞ
@x

þ @ðqvÞ
@y

þ qj ¼ 0 (7)

and

q u
@j
@x

þ v
@j
@y

þ j2
 

 f ðxÞ2 ¼ @

@y
l
@j
@y

 
; (8)

respectively. u, v, q, and j vary with x and y, but not with z.
Consistent with the boundary-layer theory, Eq. (7) will be considered
to govern the velocity component v, while Eqs. (2), (4), (5), and (8)
govern u; h;Ym; and j, respectively.

For the non-reactive case, _xF ¼ _xO ¼ 0. For the reactive case, a
one-step chemical kinetics term appears in the energy and mass-
fraction equations. One stream is composed of oxygen or a fuel-lean
mixture, while the other stream is composed of propane or a fuel-rich
mixture. m ¼ O corresponds to O2, and m ¼ F corresponds to C3H8.
The reaction rates of each gas are related by _xm ¼ _xF=m, where m
is the stoichiometric ratio between propane and gas m by mass.  is
provided in Table I for each species. Q is the heating value of propane
per unit mass.

We follow the Westbrook and Dryer38 one-step reaction rate for
propane

_xF ¼ Aq0:75Y1:65
O Y0:10

F eEa=RFT1h ; (9)

where A ¼ 4:788 108ðkg=m3Þ0:75=s is a reaction rate constant.
The activation energy of propane in oxygen is Ea ¼ 30:0 kcal

mol, and the
gas constant of propane is RF ¼ 0:1885 J

g K. T1 and h will be dened
hereinafter.

In order to make the results more general, the following normal-
ized non-dimensional variables are created:

x ¼ x
x0

; u ¼ u
u1

; h ¼ h
h1

; q ¼ q
q1

;

y ¼ y
d0

; v ¼

Re0

p

u1
v; j ¼ x20

d0u1
j; l ¼ l

l1
;

z ¼ z
d0

; w ¼

Re0

p

u1
w; f ðxÞ ¼ x0f ðxÞ

u1

q1

p ; Q ¼ Q
h1

;

Da ¼ Ax0q0:751
u1

; Re0 ¼
q1u1x0

l1
; d0 ¼

x0
Re0

p :

Upstream conditions are applied at x¼ 0. x0 is the positive value used
to normalize the x dimension. Based on the value of x0, the Reynolds
number is given as Re0. d0 is an estimate of the boundary-layer thick-
ness at x¼ x0 and is used to scale the results for y and z. The subscripts
1 and1 are used to denote the free-stream behavior of a particular
variable as y ! 1 and y ! 1, respectively. A non-dimensional
Damk€ohler number Da is created to dene a normalized reaction rate
of the fuel. This number offers a ratio between the chemical rate and
the transport rate within the ow. This number will be large (of the
order 106) because, in this study, chemical reactions occur much more
rapidly than thermal or mass transport.

The governing non-dimensional equations become

@ðquÞ
@x

þ @ðqvÞ
@y

þ qj ¼ 0; (10)

q u
@u

@x
þ v

@u

@y

 
¼ @

@y
l

@u

@y

 
; (11)

q u
@j

@x
þ v

@j

@y
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 f ðxÞ2 ¼ @

@y
l

@j

@y

 
; (12)

q u
@h

@x
þ v

@h

@y

 
¼ 1

Pr
@

@y
l

@h

@y

 
 qQ _x

F ; (13)

q u
@Ym

@x
þ v

@Ym

@y

 
¼ 1

Pr
@

@y
l

@Ym

@y

 
þ q _x

m;

m ¼ O; F;CO2;H2O; (14)

where

_x
F ¼ Daq0:75Y1:65

O Y0:10
F eEa=R1T1h : (15)

Taking gaseous oxygen at 300K and 10bar where q1 ¼ 4:798 kg
m3 ;

l1 ¼ 42:43lNs
m2 , and u1 ¼ 1m

s , we nd x0 ¼ 0:88mm for Re0 ¼ 100.
The estimate of the thickness of the shear layer d0 under these conditions
becomes 0:88=


100

p
¼ 0:088mm. In the two-dimensional case with no

imposed counterow, the actual shear layer thickness at x ¼ x0 is found
to be 0:39mm, which is of the same order as our estimate; x0 is approxi-
mately 2.3 times the shear-layer width that occurs at that x-position.

The specic heat at a constant pressure is taken to be constant
throughout the domain and equal to 1309 J

kg K. This value is the aver-
age of the expected specic heat a at constant pressure of gaseous

TABLE I. Chemical properties of all four species.

m Molecular formula Mð g
molÞ TcðKÞ Vcðcm3

g Þ 

O O2 32 154.55 2.5 0.275
F C3H8 44 369.15 4.5 1.

CO2 44 304.15 2.1 0.334
H2O 18 647.14 5.2 0.612
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oxygen (988 J
kgK) and gaseous propane (1630 J

kg K). Following the calo-
rically perfect-gas assumption (h ¼ cPT)

T ¼ T1h: (16)
Following the ideal-gas assumption and using a uniform-pressure
assumption

q ¼ T1
T

W
WO

; W ¼ 1
XN

m¼1

Ym

Wm

: (17)

l is determined by taking the weighted average of the uid
viscosities

l ¼
XN

m¼1

Ymlm: (18)

The viscosity of a particular uid component at a given temperature
lmðTÞ is found using the Chung et al.39 relation for the viscosity of a
dilute simple molecular gas, where

lmðTÞ ¼
ð4:0785 105ÞT1=2

M1=6
m V2=3

c;m
A
TB þ

C
exp ðDTÞ þ

E
exp ðFTÞ þ GTB sin ðSTW HÞ

  : (19)

M is the species molecular weight in g
mol, Vc is the critical volume in

cm3

g , and the dimensionless temperature T can be found as

T ¼ 1:2593
T
Tc;n

; (20)

where Tc is the critical temperature in K. The empirical constants
are given as A¼ 1.161 45, B¼ 0.148 74, C¼ 0.524 87, D¼ 0.773 20,
E¼ 2.161 78, F¼ 2.437 87, G ¼ 6:435  104, H¼ 7.273 71, S
¼ 18.0323, and W ¼ 0:768 30. This relation along with Eq. (19)
determines l at all points; l is determined simply with its
denition.

The molecular weightM, the critical temperature Tc, and the crit-
ical volume Vc of each uid is summarized in Table I.

B. Computational scheme

The computational domain lies on the normalized x and y planes,
where

x 2 0; L½  and y 2 H;H½ : (21)

L and 2H are the length of the computational domain in x and y,
respectively. We choose H> 1 to ensure that the computational
domain is wider in the y-direction than the mixing-layer thickness at
x¼ x0.

The domain is discretized into a rectilinear set containing Nx

samples in x and Ny samples in y with the intention of developing
stepwise algorithms to solve for quantities of interest downstream
(x > 0). Finite-difference approximations of the differential terms are
used, following Ferziger and Perić.40

First-order forward-difference approximations are substituted
for the x-derivative terms and second-order central-difference
approximations for the y-derivative terms. The y-derivative of a
product of l and another y-derivative is approximated to the sec-
ond order with

@

@y
l

@a
@y

 
 1

Dy2


lknþ1

2
aknþ1  lknþ1

2
þ lkn1

2

 
akn þ lkn1

2
akn1


;

(22)

where k and n are the indices for the x and y positions, respectively.
n6 1

2 denotes a half step between two grid points. l is evaluated at
half steps with

lkn1
2
¼ lkn1 þ lkn

2
and lknþ1

2
¼ lknþ1 þ lkn

2
: (23)

Upstream and boundary conditions must be established for all
quantities of interest in order for the solver to operate at the edges of
the computational domain.

For u; j; h, and Ym in the non-reactive case, the initial
upstream condition is a monotonic variation with y at x ¼ 0. This
study uses a hyperbolic tangent curve in these cases. For example,
uð0; yÞ ¼ 1

2 ð1þ u1
u1

Þ þ 1
2 ð1 u1

u1
ÞtanhðyÞ. For h in the reactive

case, an inow with a temperature peak is given to allow ignition. In
particular, a Gaussian curve is taken. We take v ¼ 0 at x ¼ 0 and
v ¼ 0 at y ¼ 0.

The free-stream boundary conditions for u; j; h, and Ym are
constant values. Later, j1 and j1 will be considered as functions of x.

Figure 2 illustrates mesh-size independence for the reactive case.
Error is calculated using both sets of values of _x

F from either mesh
size. For the curves shown in Fig. 2, the maximum relative error is

FIG. 2. j _x
FðyÞj at multiple positions in x for different mesh sizes in the case

where reactions occur in the mixing layer.
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6.7% when the error is normalized by the local values of j _x
F j and

0.53% when the error is normalized by the maximum value of j _x
F j at

a particular value of x. _x
F is used to test a numerical error because it

is the most sensitive to changes in other parameters, thus ensuring
mesh-size independence for all other parameters.

Nx and Ny cannot be chosen arbitrarily. The stability of our
nite-difference scheme depends on the relationship between Dx and
Dy, which can be recovered from the two-dimensional Navier–Stokes
equations with negligible convection.40 The criterion for stable compu-
tational results is given as follows:

Dx

u
<

1
2
q

l
Dy2: (24)

In order to ensure that the changes due to the reaction rate do
not happen more rapidly than the changes due to ow advection, the
reaction rate of the fuel _x

F must satisfy the following relation:

j _x
F j <

u

Dx
: (25)

A stability condition is chosen which is stronger than necessary

j _x
F j <

2l

q
1

Dy2
<

u

Dx
: (26)

C. Comparing to the similar solution

Sirignano31 devised a similar solution for the non-reactive case
where j is allowed to vary as 1=x in the free streams. Consequently, a
function G(x) will remain constant in each of the free streams where

G ¼ 2jx
u1

¼ 2jx: (27)

Let us consider the ODEs that describe j in the free streams.
They result from setting the y-derivatives to zero in Eq. (8).

For y ! þ1,

@j1
@x

þ j21  f ðxÞ2 ¼ 0; (28)

where q1 ¼ u1 ¼ 1.
For y ! 1,

q1u1
@j1
@x

þ q1j21  f ðxÞ2 ¼ 0: (29)

With q1 ¼ 1
q1=q1

and u1 ¼ 1
u1=u1

, the last ODE becomes

@j1
@x

þ u1
u1

j21  u1
u1

q1
q1

f ðxÞ2 ¼ 0: (30)

Suppose f  varies as

f ðxÞ ¼ F
x

; (31)

where F is some given positive constant. Thus, j varies in the free
streams as

j1 ¼ A1
x

; (32)

and

j1 ¼ A1
x

; (33)

which is the desired similar form of j. This free-stream behavior in j
can be created after substitution of relations (31), (32), and (33) into
(28) and (29). The A coefcients are determined by the solution of
quadratic equations

A1 ¼ 16

1þ 4F2

p

2
; (34)

and

A1 ¼

1
u1=u1

6


1

u1=u1

 2

þ 4
q1
q1

 
F2

s

2
: (35)

Four combinations of the solutions for A1 and A1 become possible.
Here, only the cases where both coefcients have the same sign will be
considered, leaving two solutions. The positive (negative) values give a
compressive (extensional) strain in the y-direction and an extensional
(compressive) strain in the z-direction.

Note that here we differ from Sirignano,31 who set

j1 ¼

q1

p
j1 ¼ f ðxÞ; (36)

which becomes approximately correct only if F  1.
In a different case, where j does not change along x in the free

streams (f  ¼ C),

f  ¼ j1 ¼ C; (37)

and

j1 ¼

q1
q1

r
C: (38)

Three cases are investigated: j1 (j1) that is constant, j1
(j1) that varies as a positive constant divided by x, and j1 (j1)
that varies as a negative constant divided by x.

We dene a position variable g to demonstrate far downstream
similarity. Following Sirignano31

yðx; yÞ ¼
ðy

0
qðx; y0Þdy0: (39)

and

gðx; yÞ ¼ yðx; yÞ
2q1l1x

u1

r : (40)

TABLE II. Parameter denitions for the non-reactive cases.

Case f  u1=u1 Pr j1

1 1 4 1. 1
2a 0 4 1. 0
2b 2 4 1. 2
3a 1 2 1. 1
3b 1 8 1. 1
4a 1 4 0.7 1
4b 1 4 1.3 1
5a 1=x 4 1. 1:6180=x

5b 1=x 4 1. 0:6180=x
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Substituting our denitions for normalized variables gives

gðx; yÞ ¼

ðy

0
qðx; y0Þdy0


2x

p : (41)

III. RESULTS

The visualizations of the non-reactive ow when j is held con-
stant in the free streams are discussed in Subsection IIIA. Subsection
III B discusses the non-reactive case, where j varies with x in the
free streams. Subsections III C and IIID discuss the results of the reac-
tive case, including an investigation of the multi-ame structures.

Table II summarizes the non-reactive ow cases, in which
h1 ¼ 1; h1 ¼ 2=3; T1 ¼ 800K, and Da¼ 0. j1 and j1 in
cases 5a and 5b are found according to Eqs. (32)–(35), where we con-
sider only same-sign solutions for j in the free streams.

Table III summarizes the reactive ow cases, in which
h1 ¼ 1; h1 ¼ 1; hpeak=h1 ¼ 20=3, and T1 ¼ 300K. hpeak

FIG. 3. u; v; h; j, YO, and YF at
x ¼ 1 for non-reactive cases 2a, 1, and
2b. The ambient counterow strain rate is
constant with x and varies between 0
and 2. (a) uðyÞ, (b) vðyÞ, (c) jðyÞ,
(d) hðyÞ, and (e) YOðyÞ; YFðyÞ.

TABLE III. Parameter denitions for the reactive cases.

Case f  u1=u1 Pr Da

6 1 4 1. 1 500 000
7a 0 4 1. 1 500 000
7b 2 4 1. 1 500 000
8a 1 2 1. 1 500 000
8b 1 8 1. 1 500 000
9a 1 4 0.7 1 500 000
9b 1 4 1.3 1 500 000
10a 1 4 1. 0
10b 1 4 1. 750 000
11a 0 0.25 1. 1 500 000
11b 1 0.25 1. 1 500 000
11c 2 0.25 1. 1 500 000
12 1 4 1. 3 000 000
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denotes the peak enthalpy of the ignitor at x ¼ 0 and y ¼ 0. j1 and
j1 are found according to Eqs. (37) and (38), respectively.

The boundary conditions u1 ¼ 1 and u1 ¼ u1=u1 are
used for all cases. For the single-ame cases, we use YO;1 ¼ 1;

YO;1 ¼ 0; YF;1 ¼ 0; YF;1 ¼ 1, and Ym;61 ¼ 0 for m ¼ CO2;
H2O as the boundary conditions and explore the variations in these
values for the multi-ame case.

A. Non-reactive layer with constant j‘ and j2‘

Figure 3 compares the effects of the two-dimensional ow (f  ¼ 0
with only two velocity components) to the three-dimensional ow
(f  6¼ 0 with three velocity components). Figures 3(a), 3(d), and 3(e)
show that increasing the ux and the strain rate of the counterow,
through an increasing f , decreases the width of the mixing layer
for the scalar quantities. Thereby, the gradients and the vorticity
are increased. Figure 3(b) shows that this effect also increases the
inward velocity of the ow in the y-direction. In Fig. 3(c), we see
the increasing value of the strain rate j as a result of increasing f .
As f  increases, the ow eld is stretched more strongly in the
z-direction. Accordingly, the vortex stretching is greater since the
same integral of vorticity occurs in a thinner layer. For all values of
the constant f , an asymptote is reached downstream where the
layer width becomes a constant, essentially making y to be a simi-
larity variable for that asymptote.

FIG. 5. u; v; h; j, YO, and YF at
x ¼ 1 for non-reactive cases 4a, 1, and
4b. The Prandtl number varies from 0.7 to
1.3. The ambient counterow strain rate is
constant with x . (a) uðyÞ, (b) vðyÞ, (c)
jðyÞ, (d) hðyÞ, (e) YOðyÞ; YFðyÞ,
and (f) h=h1 as a function of u=u1.

FIG. 4. u at x ¼ 1 for non-reactive cases 3a, 1, and 3b. The free-stream velocity
ratio varies from 2 to 8. The ambient counterow strain rate is constant with x.
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Only u is shown in Fig. 4 because the ratio of the free-stream x-
component velocities has a very minor effect on the downstream
behavior of the other scalar quantities (v; j; h, YO, YF) when all
else is held constant. The use of u1 in the normalization results in a
similarity of the behavior for many variables. The layer width is not
affected by the velocity ratio; thus, the u-velocity gradient and the vor-
ticity increase as the velocity ratio increases. However, the scalar

gradients and the normal strain rates in the y- and z-directions are not
affected signicantly.

Figures 5(c)–5(e) reveal that as Pr increases, the mixing
layers for the scalar quantities become thinner since thermal con-
ductivity and mass diffusivity decrease, and large scalar gradients
are regained. Figure 5(f) shows that a unitary Pr results in a
linear relationship between the normalized enthalpy and the

FIG. 8. Downstream similarity for u and
h for the non-reactive case. Subgures
(a) and (b) are of case 1 where the
imposed normal strain is constant with x.
Subgures (c) and (d) are of case 5a
where the imposed normal strain varies
as 1=x.

FIG. 7. Results for non-reactive case 5b
at x ¼ 1 with the negative value of A1.
(a) vðyÞ and (b) jðyÞ.

FIG. 6. Results for non-reactive case 5a
at x ¼ 1 with the positive value of A1.
(a) vðyÞ and (b) jðyÞ.
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normalized horizontal free-stream velocity; i.e., a Crocco integral
forms.

B. Non-reactive layer with j‘ and j2‘

as a function of x

Now, we solve the case where the strain rate j is allowed to vary
as 1=x. The analytical solution for A1 and A1 yielded two solutions
(one positive pair and one negative pair); thus, here, both cases are
examined. In the case where the constants are positive, there is inow
with a compressive normal strain rate in the y-direction and outow
with an extensional normal strain rate in the z-direction. For this case,
Fig. 6(a) shows that the inward y-velocity decreases with x. As the
imposed compressive strain decreases with x, so will the rate of inow
in the mixing layer. Figure 6(b) shows the 1=x behavior of j in the
free streams. Clearly, the counterow strength and its inuence
decreases here with increasing downstream distance.

In Fig. 7(b), for the case with the negative sign, the outer ow has
inow with a compressive normal strain rate in the z-direction and
outow with an extensional normal strain rate in the y-direction.
However, reversal occurs in the interior mixing region. j is negative

in the free streams and positive in the mixing regions, implying that
there is inow in the z-direction in the free streams and outow in the
z-direction in the mixing region. Nonetheless, the 1=x behavior of
j is clear in the free streams of Fig. 7(b). Figure 7(a) shows the ow
slowing in the y-direction in the free streams because the magnitude of
the imposed extensive strain is decreasing with x.

In comparing the results for the two cases with different signs for
the constants, it appears that a tendency toward vortex stretching
occurs even when the outer ow (with the negative constant) would
favor vortex shrinking or compression. One might question the stabil-
ity of the case with the negative constant. Stability analysis is left for a
future task.

Let us compare the behaviors far downstream for the cases from
the prior subsection and this subsection. Figures 8(a) and 8(b) show
downstream similarity for u and h with regard to y. With an
imposed normal strain that is constant along the stream, the shear
layer’s growth is stopped, and the need for a new similarity coordinate
is eliminated because y becomes the similarity variable downstream.
Thus, it is clear that, asymptotically with increasing downstream
distance, the shear-layer width becomes constant and a quasi-one-
dimensional ow results, although three components of velocity are

FIG. 9. Results for reactive case 6 from
x ¼ 0 to x ¼ 5, where f  ¼ 1. (a)
uðyÞ, (b) vðyÞ, (c) TðyÞ, (d) jðyÞ,
(e) YOðyÞ; YFðyÞ, and (f) j _x

FðyÞj.
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involved. In the incompressible limit, that asymptote for the non-
reactive case is exactly the Burgers stretched vortex sheet.

A different observation is shown in Figs. 8(c) and 8(d) for the
case where the imposed normal strain rate varies as the reciprocal of
downstream distance; the shear-layer width grows approximately with
x

p
, allowing a similarity coordinate, g, as seen in the classical shear

layer theory.

C. Mixing Layer with a Diffusion Flame

Here, we consider pure propane fuel in the free stream at y¼ –1
and pure oxygen in the free stream at y ¼ 1. Upstream, a region of
high temperature is provided in the layer. Therefore, we expect mixing
of the two reactants in the shear layer, ignition, and establishment of a
diffusion ame.

Figure 9 depicts the base reactive case (case 6) at several stations
in x from 0 to 5. The results show that, if the imposed strain is
constant with x, the reacting shear layer asymptotically reaches a con-
stant width with increasing x. Thus, for both reacting and non-
reacting cases with constant f , the asymptote becomes a similar

solution with y as the similarity variable. Furthermore, since x-deriva-
tives disappear, the solution is exact for the multicomponent
Navier–Stokes equation, albeit that they were obtained as asymptotes
using the boundary-layer approximation. Here, we see an analogy
with the Burgers stretched vortex sheet with the resulting asymptotic
quasi-one-dimensional ow and albeit that three velocity components
exist.

Figure 9(c) shows a converging temperature decrease with increas-
ing downstream distance. The ame moves in the positive y-direction,
toward the oxygen-rich, higher-speed stream. This temperature peak
causes a local decrease in density, which increases the outow velocity
in the z-direction, as seen in Fig. 9(d). That is, the ow experiences a
greater extensional strain in the z-direction near the ame. Where the
density has decreased, the increased w-component of velocity main-
tains the imposed counterow mass ux. Note that there is no increase
in the mass ux in the x-direction. The y-velocity above and below
this region is locally increased near the reaction zone in order to main-
tain the mass ux at a lower density value, as seen in Fig. 9(b).
Figure 9(f) shows that the reaction rate of the fuel decreases

FIG. 10. u; v; h; j, YO, YF, and _x
F

at x ¼ 2 for reactive cases 7a, 6, and
7b. The counterow strain rate varies from
0 to 2. (a) uðyÞ, (b) vðyÞ, (c) jðyÞ,
(d) hðyÞ, (e) YOðyÞ; YFðyÞ, and (f)
j _x

FðyÞj.
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substantially downstream, while the reaction zone shifts toward the
oxygen-rich stream. The difference of the magnitude indicates that a
decreasing burning rate is required with downstream distance. The
mixing-layer thickness varies to accommodate the reduced heat ux
from the ame.

Figure 10 compares the effects of the two-dimensional ow
(f  ¼ 0) to the three-dimensional ow (f  6¼ 0) for the reactive case.
Figure 10(d) shows that, in the two-dimensional case, the ame grows

to be much wider and hotter than what was initialized upstream.
When a counterow is imposed, the ame is constricted to smaller
widths. This compression increases temperature gradients in the y-
direction, resulting in faster heat transfer from the reaction zone. A
sufcient amount of counterow (f  ¼ 2) will extinguish the ame,
altogether. Residence time is essentially the reciprocal of the strain
rate. Although the ame with a counterow is much smaller and
cooler than without, Fig. 10(f) shows that the magnitude of the

FIG. 11. u; v; h; j, YO, YF, and _x
F

at x ¼ 2 for the inverted-velocity reactive
cases 11a, 11b, and 11c. The counterow
strain rate varies from 0 to 2. (a) uðyÞ,
(b) vðyÞ, (c) jðyÞ, (d) hðyÞ, (e)
YOðyÞ; YFðyÞ, and (f) j _x

FðyÞj.

FIG. 12. u and _x
F at x

 ¼ 2 for reactive
cases 8a, 6, and 8b. The free-stream
velocity ratio varies from 2 to 8. (a)
uðyÞ and (b) j _x

FðyÞj.
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reaction rate between the (f  ¼ 0) and (f  ¼ 1) cases are very similar.
The difference is that the absence of counterow allows the reaction
zone to drift to a greater y-value, toward the oxygen stream.
Figure 11(f) shows that the reaction zone will still drift toward the
oxygen stream, even if the oxygen stream is slower than the fuel
stream.

For this reacting case as well as the prior non-reactive case, the
ratio of the free-stream x-component velocities has a very minor effect
on the downstream behavior of the scalar quantities when all else is
held constant. A slight increase in the burning rate is observed in Fig.
12(f) when the difference in speed between the two streams is lessened.
As the velocity of the slower stream is increased, the velocity through-
out the layer increases, and less burning occurs near the high-speed
stream, as shown in Fig. 12(f). Nevertheless, mass diffusion brings the
fuel to a region of larger reaction rate.

Figures 13(c)–13(e) reveal that as Pr increases, the mixing
layers for the scalar quantities become thinner for the same reasons
discussed in the non-reactive case. In Fig. 13(f), the reaction zone
does not drift as far in the positive y-direction with an increased
Prandtl number.

Figure 14 compares the reactive cases 6 and 10b to the non-
reactive case 10a. The effects of the chemical reaction discussed for
case 6 in Fig. 9 are lessened with a decreased Damk€ohler number in
case 10b. When no reaction occurs, the mixing layer for the scalar
quantities remains centered at y ¼ 0 rather than drifting toward the
oxygen-rich stream.

D. Multi-flame structures

A premixed fuel-rich ame and premixed fuel-lean ame can co-
exist with the primary diffusion ame. This multi-ame case 12 is
achieved by changing the ambient mass fraction of the oxidizer in the
fast stream from 1 to 11/12 with propane added in the fast stream.
The ambient mass fraction of the fuel in the slow stream is decreased
from 1 to 2/3 with oxygen added. Figure 15(f) clearly shows multiple
ames forming a steady structure far downstream.

In addition to the diffusion ame, a premixed fuel-lean ame is
clearly visible in the temperature proles of Fig. 15(c) as a downward
concavity on the positive y-side of the diffusion ame. The premixed
fuel-rich ame is not obvious in Fig. 15(c), but Fig. 15(f) shows that a

FIG. 13. u; v; h; j, YO, YF, and _x
F

at x ¼ 2 for reactive cases 9a, 6, and
9b. The Prandtl number varies from 0.7 to
1.3. (a) uðyÞ, (b) vðyÞ, (c) jðyÞ,
(d) hðyÞ, (e) YOðyÞ; YFðyÞ, and (f)
j _x

FðyÞj.
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fuel-rich premixed reaction is occuring, albeit at a slower rate than the
diffusion and fuel-lean premixed ames. Consistent with the previous
ndings,29–31 the premixed ames depend on the heat ux from the
stronger diffusion ame. At the particular Damk€ohler number, a pre-
mixed ame would not survive independently.

IV. CONCLUDING REMARKS

A fundamental problem for congurations commonly found
with turbulent mixing and combustion has been addressed.
Specically, mixing and reaction in a shear layer with vortex stretching
has been examined analytically. The downstream asymptotes yield
reduced-order behavior which can be helpful in developing amelet
models for turbulent combustion. The laminar treatment is justied
for amelet models because the goal is to represent the behavior of the
smallest eddies where the length scale is sufciently small so that vis-
cous dissipation is strong, and hydrodynamic instabilities with wave-
lengths comparable to, or shorter than, the smallest eddy size are
suppressed.

A constantly imposed counterow has signicant effects on the
width of a shear layer downstream. Rather than growing as the square
root of downstream distance, as found in two-dimensional shear con-
siderations, the shear-layer width will reach a constant width when a
counterow is imposed with a constant strain rate at all streamwise
positions. Far downstream, similarity is achieved as all ow variables,
including three velocity components, exhibit one-dimensional behav-
ior varying only with y across the shear layer. This asymptotic behav-
ior provides an exact solution to the multicomponent Navier–Stokes
equations for both reacting and non-reacting ows. When the coun-
terow strain rate varies as 1=x, similarity is observed with g for the
non-reacting case. In the reacting case, as previously noted,31 the simi-
larity is only an ad hoc approximation because the reacting-layer thick-
ness does not asymptote to a constant value as measured with g.

When chemical reactions are introduced, downstream similarity
with y is still observed for a constant strain rate imposed along the layer.
For sufcient y-direction compression, a ame will extinguish down-
stream. Here, outward, the spanwise ow decreases the residence time of
the combustion reactants, and the thinner mixing layer results in faster

FIG. 14. u; v; h; j, YO, YF, and _x
F

at x ¼ 2 for reactive cases 10a, 6, and
10b. The Damk€ohler number varies from
0 to 1, 500 000. (a) uðyÞ, (b) vðyÞ, (c)
jðyÞ, (d) hðyÞ, (e) YOðyÞ; YFðyÞ,
and (f) j _x

FðyÞj.
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FIG. 15. Results for reactive multi-ame
case 12 from x ¼ 0 to x ¼ 3:6, where
f  ¼ 1. (a) uðyÞ, (b) vðyÞ, (c) TðyÞ,
(d) jðyÞ, (e) YOðyÞ; YFðyÞ, and (f)
j _x

FðyÞj.

FIG. 16. Subgure (a) is a visualization of
the solution scheme for h after discretizing
the energy equation, and (b) is for v after
discretizing the continuity equation. In
both diagrams, the variable being solved
for is colored red at the black solution
point. Arrows travel toward solution points
from their dependee grid points is colored
dark gray.
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heat transfer. Likewise, there is a range of imposed strain rate where a
ame does not extinguish and maintains its form similarly downstream.
Furthermore, multi-ame structures can become similar downstream,
depending only on the y-position.

The simple computational method is inexpensive for the
boundary-layer calculations here, andmesh-size independence is dem-
onstrated. The fact that the calculations produce the similar solutions
as asymptotes in different cases also justies strong condence.

Future studies might use more rigorous multi-step chemical-
reaction models. Gases might be modeled as real for a high-pressure
domain. Rather than selecting the linear behavior of the ow in the z-
direction, a three-dimensional numerical solution might be developed,
testing for higher-order effects for the spanwise ow.

The asymptotic downstream quasi-one-dimensional behavior
with three meaningful velocity components offers interesting possibili-
ties for future computational and experimental research. This fully
developed downstream behavior retains the major features of the ow:
shear and vorticity, mixing, applied strain and counterow, and three
velocity components. Researchers often seek to examine the new con-
cepts in congurations that include key physics but reduce the dimen-
sionality of the problem. Here, we have qualitative similarity to the
fully developed Poiseuille channel ow where only one-dimension is
needed to describe the variation in the ow eld. However, in this
case, it retains three meaningful velocity components and is better
suited for studies where heat and mass transport are important.
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APPENDIX: DISCRETIZED EQUATIONS
FOR SOLUTION SCHEME

Following the notation hkn  hðx; yÞ; hkþ1
n  hðx þ Dx; yÞ, and

hknþ1  hðx; y þ DyÞ, we discretize the energy equation to solve for h at
the kþ 1th position in x, given data from the kth position as follows:

hkþ1
n ¼hknþ

Dx
qknu

k
n

1
Pr

1
Dy2

lknþ1
2
hknþ1lknþ1

2
hknlkn1

2
hknþlkn1

2
hkn1

 

qknv
k
n

hknþ1hkn1

2Dy
Qqkn _x

k
F;n


; (A1)

where the meaning of n6 1
2 is explained in Eqs. (22) and (23).

Thus, the “downstream march” is dened. Figure 16(a) illustrates
the dependency of the solution at a grid point on upstream
points. The momentum and species continuity equations are dis-
cretized mutatis mutandis as they follow the same form as the
energy equation.

The continuity equation requires a different scheme
because it contains no x-derivative of v, meaning a downstream
march cannot be implemented. We take advantage of the
y-derivative of v and devise a transverse march in the
y-direction

vkþ1
nþ1 ¼ vkþ1

n  Dy

qkþ1
nþ1

ukþ1
nþ1

qkþ1
nþ1  qknþ1

Dx
þ qkþ1

nþ1

ukþ1
nþ1  uknþ1

Dx



þ vkþ1
n

qkþ1
nþ1  qkþ1

n

Dy
þ qkþ1

nþ1j
kþ1
nþ1


(A2)

using the same notation as Eq. (A1). This march occurs at the
kþ 1th position in x and solves for v at the nþ 1th position in y, as
depicted in Fig. 16(b). Recall that the boundary condition for v lies
at y¼ 0, so the scheme must be implemented twice: once traveling
in the positive y-direction and once traveling in the negative
y-direction with Dy becoming Dy and nþ 1 becoming n – 1.
Furthermore, this scheme must be executed after the schemes for
the x-momentum and energy equations, as the solution depends on
knowing u and qðhÞ at the kþ 1th position in x.

Note that for Eqs. (A1) and (A2), the superscript notation for
non-dimensional variables is omitted in favor of legibility.
Nevertheless, these equations hold if the values are normalized as in
Eqs. (10)–(15).
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